Fault Tolerance via Replication in
Coar se Grain Data-Flow?

Anh Nguyen-Tiong, Andrev S. Grimsha and John FKarpovich

University of Mrginia, Thornton Hall, Department of Computer Science
Charlottesville, YA 22903

Email: {nguyen | grimsha | karp}@viginia.edu

URL: http://wwwcs.viginia.edu/~an7s, http://wwues.viginia.edu/~grimsha,
http://www.cs.viginia.edu/~jfk3w

1. Introduction

Recent adances in netark technology promise to mekgigbit-persecond
bandwidth between remote hosts a reality in the near future. This increase in bandwidth
paves the vay for increasedxgloitation of distriluted computing resources. Coupled
with adwances in distribted memory parallel compiler technolodhere is strong
reason to beliee that wide-area distnited parallel processing will be an increasingly
popular and important programming paradigrarafelizing and distribting program
sub-tasks has the potential to increase performance for apgtications while also
improving the werall utilization of system resources. Unfortungtdiyere is a
downside. When a program is partitioned into sub-tasks, each sub-task isitidtti
potentially a diferent processorAs the number of processors enygd by an
application increases so does the chance that the applicatiorailvduié to a host/
processordilure.

At the Unversity of Mrginia, we hae experienced first hand the problems caused
by host ilures in distribted systems while gieloping and using a prototype for the
Legion project [13][14]. The objectie of Legion is to construct the sofase
ervironment to enable a nation-wide orord-wide virtual computer capable of
supporting distribted and parallel applications. Our current prototype, which we call
the Campus-\ide Mirtual Computer (CWVC), contains a mix ofar 90 vorkstations
and an IBM SP-2 multicomputeEven in this relatiely small emironment, we are
frequently &periencing hostdilures. On the scale of the wvisioned nation-wide
system, hostdilures will simply be adct of life and must be dealt with accordingly
User applications, especially those that are critical or are composedyofiisizituted
components, must be resilient to haalures. Brtunately deeloping fwult tolerant
parallel applications does not need to béalift.

In this paper we shwothat by deeloping applications using the datavlonodel
of parallel computation there is a simple method fovipling fault-tolerance. Theey
to our approach is irkeloiting the functional nature of datasflgprograms in theault-

L This work is partially funded by NSF grants ASC-9201822, NRaD contract NO0014-
94-1-0882, and ARFPgrant J-FBI-93-116.
2 Information on Lgion is aailable on the WWW at http://wweas.viginia.edu/~lgion

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2006 2. REPORT TYPE 00-00-2006 to 00-00-2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Fault tolerance via Replication in Coarse Grain Data-Flow £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Virginia,Department of Computer Science,151 Engineer’s | REPORTNUMBER
Way,Cahrlottesville,VA,22094-4740

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 16
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

tolerance mechanisms. Recall that datertomputations are modelled by actors, arcs,

and tolens. Actors are computation prinads, tolens carry data or control information,

and arcs are used to model the dependencies between actors. The distinguishing feature
of actors in terms ofalult tolerance is their idempotent nature: an actor presented with
the same todns will produce the same result. Thusylf-tolerance can be easily
achieved through actor replication, i.e. replicate an a&taimes and use the first
available result (discard later arimg results).

To illustrate this approach, we implemented automatic actor replication within the
Mentat system [9][12]. Mentat is an object-oriented, data-floased, parallel
processing system. &used a synthetic pipeline program as a simple application to
demonstrate the peer of the approach and txmore the trade-é§ between dult-
tolerance, performance and resource consumption. Resource consumption is often
negglected it must be tadn into account as we wmtovards an evironment in which
machines are shared.e\ylan to gpand our results in the future using applications
already in use on the CWVC, e.g. BNequence comparison, VLSI routing, to name
just a fav.

The remainder of the paper isganized as follas. We first present a brief
overview of the Mentat system and itgeeution model (Section 2). &\escribe the
protocol used to transparently replicate actors and illustrate the procesveartiogn
Mentat source code to an actual run-time implementation (Section e3)shdw
experimental data tan on a synthetic pipeline application using our transparent
replication method (Section 4) and analyze the results (SectionreZhealf present an
optimization to our protocol which will be included in thexheelease of Mentat
(Section 6). Finallywe discuss relatedosk (Section 7) and conclude (Section 8).

2. Mentat

Mentaf is a high performance, object-oriented parallel processing system. There
are two primary aspects of Mentat: the Mentat Programming Language (MPL) and the
Mentat run-time system. MPL is an object-oriented programming language based on
C++. The granule of computation is the Mentat class member function. The
programmer is responsible for identifying those object classes whose member functions
are of suficient computational complity to allow efficient parallel ®ecution.
Instances of Mentat classes are used [ik++ classes, freeing the programmer to
concentrate on the algorithm, not on managing thieg@mment.

The data and control dependencies between Mentat class instaratesdirin
invocation, communication, and synchronization are automatically detected and
managed by the compiler and run-time system without further programmer
intervention.

Mentat classes are denoted by the inclusion of ¢evderd “mentat” in the class
definition, as in the mentat classv_wor ker shavn in Figure 1. The dyword
nment at tells the compiler that the member functions of the class arth wkecuting

3:Information on Mentat isvailable on the WWW at http://wwes.vilginia.edu/~mentat

in parallel. Mentat classes may be defined as efifyaistent or regular. Instances of
regular Mentat classes are logically stateless, thus the implementation may create a ne
instance to handlevery member function irocation. PersistentMentat classes
maintain state information between member functiendations. This is an adatage

for operations that require g amounts of data, or that require persistent semantics.

Figure 1Mentat class definition

regular mentat class sw onker {
/I private data and function members
public:
result_list*compare(sequence* libstruct*,paramstruct);
3
The lkeyword “mentat” tells the compiler to treat instances of this claderdiftly The

“regular” modifier indicates that instances of this class are stateless, iye.arthgure
functions.

A Mentat object is an instance of a Mentat class, and possesses a name, a thread
of control, and an address space. Because Mentat objects gadhdinavn address
space thg are address space disjoint. Therefate communication between Mentat
objects and between Mentat objects and main programs is via member function
invocation.

2.1. Mentat Execution Model

The Mentat gecution model is based on the macro data-fltodel (MDF [10]),
an «tension of the pure data-flomodel. MDF is one of steral lage grain data flo
models [3][6][8] that gpand on traditional data fho The salient features of MDF are
that it incorporates the notion of state, adds the ability to dynamically create graphs, and
provides coarse grained actors. In MDi€tors with states are said to fmesistent
actors while stateless actors are caltegular actors (persistent and gailar actors are
implemented by persistent andjuéar Mentat objects).

The Mentat run-time system implements a virtual macro datarflachine that
transparently constructs program datavfigraphs, schedules actors on processors, and
manages communication and synchronization. Thesntokatching unit (TMU)
implements the pure data\flsubset of the MDF model and is responsible for matching
tokens and for enabling an actor when all iteetekare present. When all of thedok
required for an actor computatiomnvieaarrived, the TMU issues a scheduling request to
the system schedulefhe scheduler selects a processor to service the request and
notifies the TMU, which then foravds the tokns to the actor so that it mayeeute. ©
distribute the verkload associated withgalar actors, there is one TMU per host and
work is divided among them via a simple hash function.

The mapping from a sample MPL source code fragment that ugdarrebjects
to the implementation is shv in Figure 2. At run-time, calls made tguar object
functions (actors) are transformed into a date-ftpaph (Figure 2b), which is then

acted on by the run-time system to deli the proper guments (tok&ns) to the
appropriate objed’ function (Figure 2c).df more information on the Mentat system,
including hav it detects data dependence anidds data-flav graphs, see [10][12].

Figure 2 Transformation from sour ce code to execution

(a) Source code (b) Data-flav (c) Execution
5

(0) main() {
(1) object_classl A,
(2) object_class2 B;

5
1
Sg} x=B.bar(A.foo(5));
yd
@wugy__
| (rap
[@
Example 1

First the graph is constructed at run-time in the main program. The datatfph is
mapped onto the implementation as foio

* A message containing the &k “5” is sent to a TMU (TMYin Figure 2c). The
token contains a computation iagat uniquely identifies the actor and the numb
of tokens required to enable the actbhe message also contains aycop the
program graph.

» Upon receiing the tolen, TMU; determines that the actor (A.foo()) may fir
because all necessary éuls for the actor lva arrived. TMU; malkes a scheduling
request to the system scheduler which creates an instance of object A and r
A's plysical address (host id and port number).

* TMU, forwards the to&ns and computation tags to object A.

» Object A xecutes function foo().

* When A.foo() finishes, it must send the result along all outgoing arcs in
program graph representation. Since B isgala object, the result is passed to
TMU that is responsible for matching B.bas(jolens.

* B.bar() is handled similarly with the end results sent back to the main prograr

1. computation tags are similar to tkcolors [21].

3. Extending the model to support fault-tolerance

To provide transparent alilt-tolerance we xtend the run-time system to
automatically replicate gular object recution. V¢ first describe the interfe and
shaw that users can easily achédfault-tolerance. Wthen describe the implementation
of the replication protocol.

3.1. User interface

Users specify the deee of replication by creating an instance of the class
replication_manager and setting the el of replication desired. Thevel of
replication is walid within the scope of the declaration. The irdeef for
replication_manager is shavn belav:

class replication_manager {
public:
void set_num_replicates(int wanary);
replication_manager(mamary);
~replication_manager();
h
The constructor for the epl i cati on_nmanager class s@es the current
replication setting. Users specify amnsetting within the constructor and careide
their initial setting via the methoglet _num r epl i cat es() . The nev setting is
then \alid until the flav of control «its the current scope, at which point the destructor
is implicitly invoked and restores theveal setting. The follwing code fragment
illustrates the use afepl i cati on_nmanager:

main()
{
int a;
object_class X, Y
replication_manager ft_polid (3);// replication leel is 3

a = X.op1 (Yop2());
{ /I new scope
int b;
replication_manager ft_poli2(2); // replication leel is nav 2

b = X.op1 (Yop2());
}

Il replication leel is restored to 3

}

3.2. Implementation

The Mentat run-time system transparently replicategulae objects by
duplicating the tokns and sending them to distinct TMUs. The choice of the additional
TMUs is based on a hash function which is guaranteed to select distinct TMUs.
However, nave duplication of tokns will lead to anx@onential gravth of tokens and
computations. If we consider the dataaflgraph in Figure 3b, ne replication wuld
duplicate the “5” tokn and tw A.foo actors wuld be created. Similaglyf the result
from each A.foo actor were duplicated, four B.barbuld be &ecuted. Br lamger
graphs this xponential gravth would quickly aoerwhelm the system. ol avoid
exponential gravth each TMU tracks the teks it has already rewed. When, under

normal circumstances, the duplicatedn& for a computation avd, the TMU discards
them. By discarding duplicates weo& instantiating xtra duplicate computations.

Figure 3 Implementing replication of regular objects

(a) Source code

(0) main() {
(1) object_class A, B; (c) Execution
(2) replication_manager ft_po§¢2);

8 } x = B.bar(A.foo(5)); ,5/\;5
(b) Data-flav graph

5 o

|
+
B,.ba
N/

We modified the program okample 1 in Figure 2 to set the replicationdleto two (Figure 3a
Execution proceeds as folls (Figure 3c):

* A message is created that contains thends”, the program graph, and theéé ol
replication. This message is duplicated and sentaadistinct TMUs. The TMUs a
chosen based on the computation tag for A.foo() using the primary and second
function.

* Each TMU independently instantiates a xap object A using the protocol descril
in Section 2.1. The actor corresponding to A.foo() is thus replicated.

e The result from each A.foo() is foamded to each of the TMUs handling thext
replicated actor (B.bar()). The TMU has been modified to detect duplicatestak
discards the duplicates to pemt an gponential gravth of objects instantiated.

-G

Example 2

One critique of this technique is that one cannotkhow long to “remember”
which tolens hae already been consumed. &effthis is not a problem. 8\use a figd
size table of past teks. When a neslot is needed we throaway the tolen with the
oldest timestamp. In the unéily event that a duplicate tek arrves after we hae
“forgotten” about it we simply schedule a redundant computation whose result will be
thrown away later

Only minor changes to the TMU were required. No coordination is required
between replicated objects nor between TMUs. Hilere of ay k-1 of the TMUs
handling ak-replicated actgror k-1 of the replicated objects, does notvamt the
successful completion of the program, though a current requirement is that the host
where the main program is running does rdt Finally, the replication algorithm is
decentralized and hence scalable.

The TMUSs responsible for agin replicated object, i.e. TMUand TMU, or
TMU3 and TMU,, (Figure 3) are placed on distinct hosts by the Mentat system. Mentat
does not currently guarantee that the replicated objects themsseute on separate
hosts, though this is lgty to be the case. Assuming a random placement of objects and
one hostdilure, the probability that all objects are placed onailed host is gien by:
P(n,z) = in wheren is the number of replicates amthe total number of hosts.

Under satzuration, the Mentat scheduler [11d@fvely uses a random placement pyplic
4. Synthetic Pipeline Application

To explore the trade-é betweendult-tolerance, CPU resource consumption, and
performance, we e created a synthetic pipeline application. In this application, the
work is dvided into independent pieces thatflthrough a tw-stage pipeline with the
results collected by the main program.

We hare implemented tev versions. The first ersion is a nonafult-tolerant
version using standard Mentat code and the non-enhanced run-time system. The second
version is &ult-tolerant emplging the transparent replication method. Section 4
describes the implementation of ea@nsion in more detail while Section 5 discusses
our performance results and demonstrates the trdsiebetween dult-tolerance,
resource consumption and performance.

4.1. Original MPL version

The non ault-tolerant ersion and its data-flograph representation are shoin
Figure 4. On line 3, we declaredwegular objects that are the data processing filters.
The number of iterations in the pipelindNldM_RESULTS. The data flavs through the
two filters in a pipeline &hion before being stored in an array back in the main
program. The data-fle graph generated from the source code implicitiwshthe
independence of the computations. Thus, thevatgnt of a DO_ALL loop is
automatically achieed.

Figure 4 Original source code and data-fle graph

(a) Source code for original noault-tolerant Mentatersion
(0) main() {
(1) my_data the_data]NUM_RESUBE];
(2) my_results resultfNUM_RESULS];
(3) data_processor dpl, dp2; // these are gular objects
(4) for (i=0;i<NUM_RESULS; ++i)
(5) result[i] = dp2.process(dpl.process(the_datali]));
(6)}

(b) Data-flav graph representation

\
ONEENEEC)

4.2, Transparent Replication \ersion

For the transparent replication method, the code is identical to the original code
except for the specification of the replication pglan line 4 (Figure 5). The number of
replicates is related to thevtd of fault-tolerance desired. By a@eiit, all reyular objects
are 1-replicated. In generalkaeplicated object will tolerate k-ailures assuming that
all objects are placed on afdifent host. Setting the number of replicates high will
improve the &ult-tolerant characteristics of the application at the cost of higher resource
consumption and possiblyonse performance (depending on the number of hosts
available).

Figure 5Source code dér transparent replication method

(0) main() {

(1) my_data the_data[NUM_RESUE];

(2) my_results resultfNUM_RESUILS];

(3) data_processor dpl, dp2;

(4) replication_manager ft_poli¢number_of_replicates);

(5)
(6) for (i=0;i<NUM_RESULIS; ++i)
) result[i] = dp2.process(dpl.process(the_datali]));
8}
5. Results

When waluating a #&ult-tolerance mechanism for a parallel computing
ervironment we must éep firmly in mind that performance is thaison détre of

parallel computing. In a shared computingisnment with multiple users, resource
consumption is also an issue;yaresources used to ensugalt-tolerance for one
application cannot be used by another application. A design that incursviitjead,
recovers hiled computations shdy, or uses lage amounts of resources will not be used
if the price is too high.

To determine the relat strengths and weaknesses of the transparent replication
method, we tested its performance with a synthetic pipeline application and used the
non-fault tolerant implementation as a baseline Mkted the transparent replication
method under noaflure and singledilure scenarios to determine its reery time
characteristics. Wtested each configuration onaaigty of workloads, ranging from 1-

32 pipeline iterations with each stage of the pipe taking approximately 13 sectmels
times presented beloare the werage start-to-finish all clocktimes aer 25 runs on a
dedicated netark of 8 Sun SparcStationZonkstations.

5.1. Non Fault-tolerant Baseline Case

In Table 1 we sho the aerage vall clock time elapsed for the baseline case with
no failures. Notice that for 1 to 4 iterations of the pipe performance remains nearly
constant. This is because Mentat automatically detects the independence of each
iteration of the main loop and immediately schedules the first stage of the pipeline
across all iterations. The theoretical limit for the pipeline is reached with 8 iterations. In
practice, this limit is often not aclwied because the scheduler may place multiple
objects on the same host and thus the performagcadis as the number of iterations
increases to 8.

5.2. Transparent Replication

An adwantage of the transparent replication method is that it essentialigigso
instantaneous rewery in the presence ddifure. Morewer, it is generic and easy to use.
Applications are not limited to a particular structure, as the Mentat run-time system can
handle arbitrarily compledata-flav graphs. The programmer sets the replicatioelle
for objects and does not need torry about thedult-tolerance protocolsynlved. The
main dravback of this method is its high usage of CPU resources.

Table 1 shars performance and resource consumption with thes ¢ replication
set to 2. Resource consumption is directly related to the replicatelraled thus twice
as mamg resources are consumed. When thailable set of hosts is saturated with
objects, performance decreases in relation to the aatrtblerant baseline case as
replicates delay thexecution of other objects. Thisfeft can be seen especially for 16
and 32 iterations, where performance respeltidegrades by 28% and 55%. On the
other hand, when the number of hostseeds the number of objects, there is almost no
performance penalty

4 There is nothing special about 13 secondsadn, the granularity could be smaller by
two orders of magnitude.

Table 1. Performance and CPU resour ces consumed
with 0 & 1 host failure smulated

No host failure 1 host failure
Baseline 2-replicated 2-replicated
Time Total Time Total Time Total
(sec) Resources (sec) Resour ces (sec) Resources
Iterations (CPU sec) (CPU sec) (CPU sec)
1 27 26 26 52 28 50
2 28 52 27 104 29 95
4 33 104 36 208 39 196
8 50 208 58 416 58 370
16 71 416 91 832 93 770
32 120 832 186 1664 191 1540

There is no significant dérence in performance between the 0 and 1 ladsté
case with the replicationvel set to tw. This is &pected since the objects that were
placed on thediled host hee a duplicate on another host. Resource consumption is
slightly lower with one hostdilure as the objects that are placed ondiled host only
partially execute or do nobtecute at all.

6. Dormant replicates

In the preious replication technique, replicated actors wenags actie - the
fired as soon as their teks were matched. The resulisaa profligte use of resources
— even when there as no &ilure. o address the resource consumption problem we
now introduce the concept of dormant actors. A dormant actor does not fire immediately
when enabled. Instead, its TMU monitors the state of ameaatitor by periodically
sending ping messages. When thevactictor &ils to respond within some specified
time intenal, the TMU reissues the actor computation.

The combination of aste and dormant actorsfafds users the fibility of
controlling the resource consumption and aggvessiss of their replication pojicBy
using dormant actors, users may reduce the consumption of CPU resources while
arbitrarily increasing the el of fault-tolerance. Hwever, they may pay a performance
penalty in the presence dilures as time wuld be lost in (1) the partialawk already
performed by thediled object, (2) detectingifure, and (3), restarting and reeeuting
the computation. By judiciously choosing the number ofvaddictors, the number of
dormant actors and their associated ping ialerwsers may maximize their objeeti
function, whether it be to achie the best performance, thdiaént use of CPU
resources or a combination of both. This approach does not enforce a particwar polic
but leaves that decision in the hands of the application writer

6.1. Interface for specifying active and dormant actors

Users specify the replication palicby creating an instance of a we
replicati on_manager class and setting the number of aetactors, the number
of dormant actors and their ping intals. The intedice is shan belav:

class replication_manager {
public:
void set_num_acte(int havmary);
void set_num_dormant(int t\anary, int pingintenal);
void set_num_dormant(int taanary, int pingintenalsy]);
/I constructors
replication_manager(int numAe#g);
replication_manager(int numAe#g, int numDormant, int pinginteal);
replication_manager(int numAeg, int numDormant, int pingintealf]);
~replication_manager();

Note that there are twways of setting the ping inteal In the first, users specify
the ping interal in seconds for all dormant objects. In the second, users specify the ping
intenval for each dormant object. Figure 6 illustrates the use of the
replicati on_nmanager class.

6.2. Implementation

The impraved replication protocol is much more compéad requires changes to
both TMUs and rgular objects. Replication is still acke by duplicating tokns and
sending them to distinct TMUsxeept that nw, the level of replication is specified by
summing the number of aeéi and dormant replicates. Moveq we require at least one
active object. © clarify the description of the weprotocol, we distinguish between
actve and dormant TMUs, i.e. TMUs that handle \actbbjects or dormant objects
respectiely’. We nav describe the protocol for both kind of TMUs.

Recall that in the original protocol TMUs nmela scheduling request and then
immediately forvard the tokns to the nely instantiated object. In the weprotocol,
active TMUs must also send the objeatame to dormant TMUs so that the latter can
periodically ping the object. Dormant TMUs do not makscheduling request when the
tokens are matchedubinstead start monitoring the enabled actor by using the ping
intenval P associated with the actdfr within P seconds, the dormant TMU has not
receved the name of the aeti object from an aste TMU, it will go ahead and
schedule another instance of the adtherwise, the dormant TMU pings its associated
active object gery P seconds. If the aati object &ils to respond within P seconds, the
dormant TMU considers it dead and reschedules another instance.

The implementation of galar objects must also change. In addition to &vding
their results to the ménodes in the data-flograph, rgular objects must also notify all

5TMUs may be both aate and dormant — tlyeare actie or dormant with respect to a
particular actar

dormant TMUs that thehave finished their computation. Otherwise, dormant replicates
would fire within at most P seconds of completion of thevaggplicate. All dormant
TMUs associated with the finished computation can then stop monitoring the status of
replicated actie objects and discard the unusedetok

Note that we defineaflure as the inability to respond. The aetbbject may in
fact be alie but may be unable to respond because of aorktwailure, a processor
overload, or some other problems. While we may schedule a redundant computation as
a result of our definition ofaflure, the algorithm is still correct since actors may be
safely replicated due to their idempotent nature. Of course, wresdhte of &lse &ilure
is unnecessarily increased resource consumption.

Figure 6 Replication with active and dormant regular objects

(a) Source code
(0) main() {
(1) object_class A, B;
(2) /1 actve, 1 dormant with a 30 sec. ping int&rv
(3) replication_manager rp (1,1,30);

(4) x=B.bar(A.foo(5));
5} (c) Execution

,5/\5\
v :I'l;/I_U\Z\)
Legend (b) Data-flav graph IR
pin
5 \ %m alive
{Agfog / \
- _v_ T " :I'l—\/I_U‘4:‘
Bg (\B4.ba/r' p|r; S -
V | \ /%m alive
(‘main:\

Active TMUs use a simple round-robin scheme to select their associated dormant
TMUSE. A possible result of this assignment is that arvaabject may be monitored
by more than one dormant TMU. If the &etiobject were todfl, then multiple copies
of the object wuld be started. d alleviate this problem, the first dormant TMU to

-

+“dormant

- W --— (]
o
QD

6-TMUs are ordered by using the same hash function on the computation tag.

restart thediled computation informs the other dormant TMUs of thelyactivated
objects plysical address. Consider the scenario in Figure 7 where the replicatign polic
is set to 2 acte and 3 dormant objects. TMUWletects A’'s failure, restarts the
computation (A.foo) and sends TMYA3's plysical address. TMythen pings A
instead of thediled A.

Even with this algorithm, it is still possible to unnecessarily instantiate multiple
copies of a computation.oF example, TMU, and TMU; could hae simultaneously
detected A's failure and independently restarted the computatiomemer, this is a
worst case scenario that onlyeaits the resources consumed and not the correctness of
the result.

Figure 7 Dormant TMUs sharing the same active object

Activeobjects Dormant TMUs Active objects Dormant TMUs

Q

o) | | TR e
AJ's plysical
Ve
T T

I A, fails I

7. Related wor k

While there is a rich literature iradilt-tolerance for distrilted and real-time
systems (see forxamples the proceedings oawt-Tolerant Computing Symposium
(FTCS) and Realiime Operating Systems TRS)), there has been much less done in
the area ofdult-tolerant parallel processing systems. Most of thik\was concentrated
on fault-tolerant hardare, e.g.dult-tolerant neterks and system reconfiguration after
a fault. There has been some though, kamneple, FTLinda [4], PLinda [15], Orca [16],
Calypso [5], and &il-safe PVM [17]. These systems use a combination of welvkno
mechanisms such as replication, transactions, message logging, or checkpoints and
rollbacks to preide fault-tolerance.

Mentat difers from these systems in that its underlying computational model is
based on data-fle Moreover, Mentat and macro datasflo(MDF) differ from other
large grained data-flw systems such asaRile [2], CDF [3], HeNCE [6], and Code/
Rope [8] in that program graphs in MDF are dynamic and generated at runtime. In
Mentat, the program graphs are generated by the compiler and run-time systean, unlik
[2][6][8], where the programmer is responsible for generating the program graphs using

a graphical intedce. Rralex uses the ISIS toolkit to pve fault-tolerance via the
coordinatofcohort model [7]. ® our knavledge Rralec is one of the f& data-flav
parallel processing system that yides direct support foratilt-tolerance. ZAMM
[19] is another bt its application domain is embedded real-time systems.

The techniques described in this paper are easily applicablg warse grain
data-flav systems. Havever, replication is not neel and is a well understood concept
even in the general case of objects/processes with state [18][20]. c@udiffers in that
we hae focussed on the special case, i.e. stateless objects,xploitee their
idempotent nature to pvle easy-to-useafilt-tolerance. Furtherthe replication
protocol is greatly simplified as the system does not need to maintain consistenc
between replicates or talkcheckpoints and rollback.

8. Conclusion

Wide-area parallel processing systems will soonJadlable to researchers to
solve a range of problems. It is certain that hastifes and otheafilts will be aneery
day occurrence in these systems. Unfortunately contemporary parallel processing
systems were not constructed widhult-tolerance as a design objeeti

The data-flav model, long a mainstay of parallel processindersfhope. The
models functional nature, which mek it so amenable to parallel processing, also
facilitates straight-forard fault-tolerant implementations. It is the combination of ease
of parallelization anddult-tolerance that we feel will increase the importance of the
model in the future, and lead to the widespread use of functional components.

To illustrate our point, we va modified the Mentat run-time system tovide
transparent replication of dataslactors. The adntages of this method are that it is
easy to use, programmers simply set thellef replication desired in the parts of their
program that needhtilt-tolerance, and generic, ibvks with arbitrarily compbe data-
flow graphs. Its main dweback is the high consumption of CPU resources.
Furthermore, we h& found that while setting theviel of replication high can impve
the fault-tolerance characteristics of an application, it can alee &derse iects on
performance. When hosts are saturated with objects, performance decreases as
replicated objects compete with other objects for CPU resourcesveip we hae
outlined an optimization that can significantly reduce the amount of CPU resources
consumed while ging users a flable interface for controlling the replication pojic

Using Mentat, programmersvVaat their disposal a “dial” with which to tradd-of
fault-tolerance, performance and resource consumption. Where programmers choose to
set the “dial” ultimately depends on the relatimportance that tlyeattach to &ult-
tolerance, performance and resource consumption.

Now that we hae demonstrated that na$t techniques can be added to our
existing system, the meé steps are to implement the optimized replication method and
investicate its performance and resource consumption characteristics wittrsediet
of applications on the Uwérsity of Mrginia's campus-wide virtual computein

addition, we plan to prade mechanisms to supporuit-tolerance for persistent
objects.

9. Acknowledgments

We would like to thank Adam Ferrari and Mark Hyett for their suggestions in
writing this paper We would also lile to thank the reewers for their insightful
comments on an earlier draft of the paper

10. References

[1] T. Agervala and Arvind, “Data Flw Systems, |[EEE Computer, vol. 15, no. 2, pp. 10-13,
February 1982.

[2] ©O. Babaoglu et. al., ‘@alec: An Ernvironment for Rrallel Programming in Distrilied
Systems, Technical Report UBLCS-92-4, Laboratory for Computer Scienceyddsity
of Bologna, Oct. 1992.

[3] R. F Babb, "Rarallel Processing with Lge-Grain Data Fi Techniques$, IEEE Com-
puter, pp. 55-61, July1984.

[4] D. Bakken and R. Schlichting, “Supportinguit-tolerant parallel programming in Lintla,
Technical Report TR93-18, The Wersity of Arizona, 1993.

[5] A. Baratloo, PDasgupta and Z. M. édem, “CALYPSO: A Nwel Software System for
Fault-Tolerant Rrallel Processing on Distriked Platform$, Proceedings of the Fourth
IEEE International Symposium on High Performance Distributed Computing, pp. 122-
129, Washington, D.C., August 1995.

[6] A. Beguelin et al., “HeNCE: Graphical Delopment ©ols for Netvork-Based Concurrent
Computing;, Proceedings SHPCC-92, pp. 129-136, Wiamshurg, VA, May, 1992.

[7] K. Birman et. al., “Implementingdult-Tolerant Distriluted Object$,|EEE Transactions
on Software Engineering, Vol. SE-11, No. 6, June 1985.

[8] J.C. Bravne, T Lee, and J. \&th, “Experimental Esluation of a Reusability-Oriented
Parallel Programming Bsfronment; |EEE Transactions on Software Engineering, pp.
111-120, wl. 16, no. 2, Feb1990.

[9] A.S. Grimshay, “Easy to Use Object-Orientec@iallel Programming with Mentat,EEE
Computer, pp. 39-51, May1993.

[10] A. S. Grimsha, “The Mentat Computation Model - Data-en Support for Dynamic
Object-Oriented &allel Processing,Computer Science ekhnical Report, CS-93-30,
University of Mrginia, May 1993.

[11] A. S. Grimsha and V E. Mvas, “FALCON: A Distributed Scheduler for MIMD Archi-
tectures”,Proceedings of the Symposium on Experiences with Distributed and Multipro-
cessor Systems, pp. 149-163, Atlanta, GA, March, 1991.

[12] A. S. Grimshay, J. B. Wissman and WT. Strayer “Portable Run-ime Support for
Dynamic Object-Oriented @allel Processing”Jo appear in the ACM Transactions of
Computer Systems.

[13] A. S. Grimsha, A. Nguyen-Tiong and WA. Wulf, “Campus-Wde Computing: Early
Results using Lgion at the Uniersity of Mrginia”, Technical Report CS-95-19, Depart-
ment of Computer Science, Wersity of Mrginia, 1995.

(14]
(15]
[16]

[17]

(18]

[19]

[20]

(21]

A. S. Grimshw et. al., “Lagion: The Nat Logical Step dward a Natizvide Mirtual Com-
pute’ Computer Scienceékhnical Report, CS-94-21, June 8, 1994.

K. Jeong and D. Shasha, “Plinda 2.0: A transactional/checkpointing approacit tolf
erant Lindd, Proceedings of the 13th Symposium on Reliable Distributed Systems, 1994.
M. Kaashoek et. al., ‘fhnsparentdult-tolerance in parallel Orca programSymposium
on Experiences with Distributed and Multiprocessor Systems, 1992.

J. Leon, A. L. FisherRP Steenkiste, “&il-safe PVM: A portable package for distrtbd
programming with transparent re®vy”, Technical Report CMU-CS-93-124, School of
Computer Science, Camgie Mellon Unversity, PA, February 1993.

M.C. Little and S.K. Shviastaa, “Replicated K-Resilient Objects in Arjuna’tdeeedings
of the 1st IEEE Workshop on the Management of Replicated Data, Houston, pp. 53-58,
November 1990.

R. A. Obando and J. V&toughton, A Performance Prediction Model for adt-Tolerant
Computer During Rec@ry and RestoratichNASA Contractor Report 195074 A$A
Langley Research CenteYirginia, February 1995.

D. Pavell, “Delta-4: A Generic Architecture for Dependable Disitérl Computing,
ESPRIT project 2252 Research Report, Springelag, 1991.

A. H. Veen, “Datafler Machine Architectur& ACM Computing Surveys, pp. 365-396, ®l.
18, no. 4, Decembget986.

